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We construct soliton states as quantum corrections to the coherent states constructed 
from classical solutions of nonlinear field equations. The corresponding field operator applied 
to the vacuum state allows us to discuss physical features of the (one soliton plus various 
mesons) states. 

1. INTRODUCTION 

A great deal of work has been done recently on solitons, both from the classical 
and quanta1 viewpoint [I]. The latter is especially important if the basic program of 
constructing some of the subnuclear particles as soliton states of other particles is to be 
effected. In order to do that, two features are necessary. First it is necessary to have a 
system of nonlinear equations which have some possibility of properly representing 
the fundamental particles from which the solitons are to be constructed. On the other 
hand there must also have been developed a powerful enough technology so that the 
properties of the resulting solitons can be read off. The first question is far from being 
answered, though progress is undoubtedly being made through gauge field theories 
and the discovery of the new particles. It is to the second question that this paper is 
devoted. 

There have been various techniques developed to quantise solitons [2]. These 
appear to have given rise to somewhat of a mystique about solitons, as if they were 
objects of a very different sort from the particles of which they were composed. The 
purpose of this paper is to attempt to dispel this mystique and give a very down-to- 
earth view of solitons. As the title of this paper indicates, the soliton is to be shown as 
being a bound state of the elementary particles of which it is constituted. Naturally 
the particular form of bound state is very different from that state usually considered 
as acceptable for such an epithet to be applied. We have to deal here with coherent 
states, so that there may be an infinite number of constituents in the soliton state. We 
will find that the existence of a topologically conserved quantum number corresponds 
to the average number of constituent particles in the soliton state being infinite. 
Moreover the probability of decay of such a state into any finite number of its consti- 
tuents is zero in this case. 

The soliton we are interested in investigating is not a pure coherent state. We 
start our analysis by determining, in Section 2, a general form the soliton state could 
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take, and then construct an approximation method for obtaining this state. In the 
following section we consider static solitons in one space and one time dimension at 
the lowest level. We then turn to the one meson plus one soliton sector, and discuss 
the various quantities of interest, such as the soliton form factor. This is extended in 
Section 5 to the two meson plus one soliton sector. The Schriidinger field representa- 
tion is used in Section 6 to obtain an approximation to the various one soliton plus 
meson states to arbitrary orders of perturbation in the higher derivatives of the 
potential, evaluated at the classical solution. We then extend the analysis to include 
time-dependent solutions to the classical equations, for moving solitons in the lowest 
approximation. Various features of the results of our analysis are discussed in the 
final section. 

2. CONSTRUCTION OF THE SOLITON STATE 

We consider a theory in d space-dimensions and take a field 4 which may have spin 
and internal spin labels, which will not be considered explicitly. We suppose that the 
field satisfies canonical commutation relation at equal time and is described by the 
Hamiltonian 

H = Ho + HI, (1) 

where H,, is a free field Hamiltonian quadratic in 4 and HI is a polynomial or trans- 
cendental function in 4. We shall assume here for simplicity that 

Ho = 1; (# + (V$)‘) ddx 

4 = j- $ UW) ddx 

(2) 

for some coupling constant g. Then the field equations will be 

4 - vy = U’(g$) 

and the CCR’s are 

(3) 

[d<x, t>, $(Y, t)l- = -4 wx - r>. (4) 

We are interested in eigenstates of H determined by possible classical solutions of (3). 
In particular we wish to consider such solutions &(x, t) that are O(g-l) as g -+ 0, 
so are nonperturbative. To obtain the corresponding eigenstate we will use the 
coherent state operator 

Wf, t) = 1 M.f&l, (6) 
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where the integration in M(f, t) is at the value of time equal to t and p = f - yS,-, , 
where 4,, = (0 1 r+5 1 0). If we use the CCR’s (4), then 

where 

WL t> w t> WL t> = 6(x, f> + f(x, t> 

vf, t> 5&x, t> WL t) = &, t> + f<x-, t>, 
(7) 

Thus 

7JHW1 = H($ + f) 

= E(f) + m 
(8) 

where O(J) denotes terms linear or of higher powers in $ and d, and E(f) is the 
classical energy for f. Then 

HW1(+, . t) I 0) = U-lUHU-l 1 0) = E($,) U-l 10) + quantum corrections. (9) 

Therefore U-l($, , t) [ 0) . IS an approximation to the soliton state for which we are 
searching. It is time-dependent, but since the energy E($,) is not we can choose the 
state defined at any value of t. 

Let us assume that at any time t the fields {$(x, t), &x, t)}xeRd form a complete set. 
This has well-known difficulties when ultraviolet divergences are present, but we will 
neglect those for the present discussion. We attempt to obtain a better approximation 
to the above soliton state by choosing the expression (taken at t = 0 for convenience): 

+ j  [.M.u, , x2) &Xl> $(x2> + fil(Xl )  s*) &x,, &x2) 

+.fkc~l 2 XJ &.x1> &x2>] dx, dxix, + *** 

+ j [fno(xl . . *  -u , )  &Xl) . . .  &- , ,  + ***  

+fnnh . * *  x , )  J’x,) . . .  &xJ] dx, . * .  dx, + -1 /  0) 

= U-l(f, 0) V(( f ; j ] - )  1 0). (10) 

We assume that the constant f .  and the functionshi can be found such that the series 
(10) converges and that it represents an eigenstate of the Hamiltonian H of (1) and (2) 
with eigenvalue E(J;,,}): 

Hlfi Uhl> = E( f ,  iA>) I f ,  {.thl>- (11) 

By Eq. (8), (11) becomes 

H($+f)V[O\ =EVjO\. (12) 
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We may rewrite (12) somewhat by using that 

ff($) I o> = 0 

~(4 + f) = H($) + j- [$j + $f’ + UC6 + f> - u(4) - WfN dx t E(f) 

Im$ + f>, &x>l- = ~w$(-4 + fw> (13) 

[H(J +.n, &>I- = W-4” -f" + qJ +mx> (14) 

so that (12) becomes 

[[Htg + f>, VI- + v s @f - &” + u<+ + f) - U(4) - W>l dx/ I 0:; 

= [E - E(f)] v I 0,. (15) 

We attempt to solve (12) or (15). If we write 

H(J + f> = C&d2 + $4 + (bf2 + $u-’ + ut8 + f>>, (16) 

we need only concern ourselves with reordering the second term on the r.h.s. of (16) 
in its action on V 1 0). This reordering must be chosen to reproduce the order of $ 
and $ chosen in the definition (10) of V, that is with 4’s always to the left of 4’s. 
We perform such reordering by the formulas 

[@TX), fi &xi)] 
j=l - 

= d”/dh” [fJ [&xj) + MS(x - X-J] eni( lAzo 
j=l 

= (17) 

where the summation in the last expression in (17) is over all choices ofj, -..jt-S and 
11 . ..* i, which are distinct from each other and lie between 1 and t. 

We may now solve (12), using (17) to give the set of equations 
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(18) 

where S denotes symmetrisation over the appropriate set of x and y variables 
(separately): 

with summation over all permutations 7r1 and z-z of (1 ... n) and (1 ... m) respectively, 
%2 = UCn)(f), and x occurs s times in the integrand of the last term in (18). We note 
that the system of equation (18) is infinitely coupled, but can be solved by iteration in 
powers of fi since the terms on the r.h.s. of (18) not involving h all involvef,,,., with 
n’ + r’ < n + r. 

We may also equate coefficients of various products of 4’s and 4’s in Eq. (15) 
though the resulting equations are more complicated than (18) and we will not write 
them explicitly here. However, we note that the first term on the left of (15) is of order 
fi compared to the other terms, so an iteration scheme in h will still be possible. We will 
return to that shortly. 

3. THE STATIC TWO-DIMENSIONAL SOLITON IN LOWEST APPROXIMATION 

Tn order to develop the theory further, especially in understanding the physical 
nature of the resulting state U-lV’ 1 0) introduced in the last section let us consider 
the lowest order of approximation for the soliton constructed on a static solution 
&(x) in one space and one time dimension to the classical field equation 

We remarked in the previous section that ; 4C, r) = U-l(~$, , t) / 0) is an approxima- 
tion to the soliton state, with energy Et+,) + O(h). We note that this state also has 
the form-factor interpretation(l): 

Thus the state 1 & , t) would be interpreted as a soliton at the origin with meson 
form-factor C&(X), as is now traditional [l]. 
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We may translate the vacuum state 10; to represent a soliton at any pointy in space 
by means of the operator 

so that with 

we have 

U(jt 4 Y>$(X, t> u-YL t, ,,I = &x9 t) +.Hx - Y, t)* 

Thus the state 

will have energy [E(&) + O(rZ)] and form factor 

More generally we can construct a soliton state at y from the general one at the origin 
in (10) by application of the translation operator exp [(i/fi)(Pu)], in the form 

(UV), = e-iPUlfiUV .+P”lfi. 

We note that such soliton states are absolutely stable against meson decay, since we 
may calculate the overlap between such a state and a state with a finite number of 
free mesons in it by choosing t = &co in the soliton state and using the asymptotic 
condition to replace the Heisenberg field 4 by a free field. We then use that 

where j1 and jl, are the Fourier transforms of fi and f2 and wy: = (k2 + p2)1/2. 
If fi = 0 and f2 = 4, , the transition probability we are investigating will depend 
on s dk wlz I iC 12. This will be infinite if JC is nonzero at infinity, since then 

The resulting transition probabilities will all be zero, so that the existence of a topologi- 
cal conservation law (&(*a) f 0) corresponds to the soliton being a stable bound 
state. It will be composed of an infinite number of elementary constituents (hence the 
title of the article) with momentum distribution function J,(k). We note that this 
remark on numbers of constituents also applies to the more general state (IO), either 
at the origin or elsewhere. 
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4. STATIC TWO-DIMENSIONAL SOLITON IN THE ONE-MESON APPROXIMATION 

Let us now turn to solving (15) in the lowest nontrivial approximation, thus keeping 
only.& , .I& , andf,, in the expression V of (10). For this approximation 

the first term on the right of (15) is 

3 I Gd-4” - 4: + wg + 4,>1 -h,$> dx. 

Thus equating coefficients of 1, C$ and 4 on both sides of (15), and neglecting the 
second term of (15), since U(&,) = U’($,) = 0, so it is O(C$~) we obtain 

[E - amLcl~4 = -wx-4 (20) 

[E - ~~#JlfoI(4 = ifif-.fXx) + U”(~,)f&)l. (21) 

Since cjC satisfies the classical equation (Isa) the r.h.s. of (19) vanishes, so that either 
E = E(qQ orfo = 0. If we choose the former of these possibilities thenf,, = 0 and 

-.f;o + W~e>flo = 0, (22) 

so that& oc +‘, . On the other hand iff” = 0 and we denote E - E($,) by ti (A # 0) 
then (20) and (21) combine to give 

Equation (23) is the stability equation for the classical solution & of the original 
nonlinear equation (18a). Its solutions for h # 0 are, for a wide class of potentials, 
the set & with discrete positive eigenvalues Xi (1 < i < N) and the continuum 
+,,, with the continuum A, > p = [U”(&,)] lj2, where U(&,) = U’($,) = 0. We have 
thus determined the eigenstates j 4C , $L), j &jn,> and I +c&> of Hwith eigenvalues 
EC+,), G+,) + f4 and EC+,) + fib , respectively. We interpret these as a correction 
to the original static soliton state, a set of N excited solitons and the original soliton 
state with an added meson of momentum k (where Ak = (k2 + p2)‘/3. 

We note certain features of these results. First there has been no infrared difficulty 
associated with the translational mode 4: . Indeed it has come to play its role along- 
side +e very naturally at the next order of approximation in V. Second we may calculate 

595/x15/'-11 
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the meson form factor in the modified soliton state, or in one of the soliton excited 
states C& . We have the general result 

<de Al Al Jill I 444 I +e Al ,ho An> 

= (0 I [Al + 1 <m + cl&] m + 9d41 x [h + J Kd +fbdJ1] I 0: 

= h”bcCx> + h j [f,*,(Y, & + f&,] @‘bronco> Iq,-vo=o & + h.c. 

where W(x x0 ,*..) = (0 j &x x0) ... j 0) are the associated Wightman functions. 
Thus we may express these form factors either as corrections to q&(x) (when X = 0, 
r,1=9;9fio=o> or directly by means of the nonsoliton Wightman functions and 
the excited soliton classical wavefunctions. 

We can also evaluate the matrix elements of d(x) between the 1 soliton state and 
the l-meson + I-soliton state as 

where the constant of proportionality is determined from the particular continuum 
function. We may evaluate (25) by the single particle approximation to W(x x,, ; y y,,), 
giving 

(40 I b(x) I dc 9 A,> cfz h\,(x) (26) 

again fitting with the standard interpretation [l] of the continuum wavefunctions. 
We can note more generally at this point that the matrix element of any product of 

meson fields in the I-soliton sector can always be expressed, by (IO), as a sum of 
Wightmans functions of the meson fields in the nonsoliton sector multiplied by the 
appropriate wavefunctions fi, . Thus analysis of the soliton sector can be completely 
reduced to that of the nonsoliton sector and that of solving for the bound state 
expressions (10). For we can see that 

(40 9 {h> I I-J $w I $0 9 w> = (0 I Wh,l> n [d<xd + ~c(x31 wm I 0) 
i i 

from which the above result follows on explicit substitution of V({hj}) from (10). 
We can also use the soliton states as part of a complete sum of states to obtain, 

for example, the expression for the meson propagator in the soliton sector as 
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Using the result (26) we find 

where LX(B) is the appropriate constant of proportionality in (26). We note that we 
may also introduce an effective meson field #s(x) in the 1-soliton sector defined from 
the creation and annihilation operators a,+, a, which create or annihilate the 
excited soliton state or the 1 -meson plus 1 -soliton state & from the 1-soliton state +e : 

Then 
I tic , $2 = aA+ I 9L). 

so that 

This agrees with our result (26), though we have already seen that such effective 
fields are not necessary in order for meson-soliton processes to be calculated. We 
have also justified the recent analysis of Steinmann [4]. 

5. THE TWO-MESON APPROXIMATION 

We continue our analysis of Eq. (15) by including the two-meson states in V. Thus 
we take 

v=f,+ s (fd + f,d> dx 
+ j- M&A d<4 d(v) + hdv) &x> &Y> + MXY) &x) &v>l dx dy 

so that 

IN6 -k f>, J’l = 8 j. M&)[- 4%) - f”(x> + Wf + f>l - Sod4 i(x)> dx 

+ j- dx j- 4Um(x~ v>Pf- f’(x) - f”(x) + U’(+ + f>) &u) 

+ ~fid(XEfYY) - f”(v) + u’tg + f>)l 

+ fidx, Y)[~fi(-fw - f”(x) + U’(l + f>) &Y> - ~fid<x> &v>l 

- %2(x, Y>m Pu> + &x) ~(Jm. 

We also use that 
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if f(x) satisfies the classical equation (3). Then equating coefficient in (15) of the 
various terms I, d(x), J(x), &c)$( y), &x)&y), &x)&u), we obtain the equations 

[E - E(f)]jb = -4” I’ dx K,(f)f*,(x, s) f fi” 1’ dXfi2(X, .K) 

[E - ~(f)lf,,(4 = -al,‘x) 

[E - W>l.f&> = ~m!u~hcI - w&9 4 I”’ 
[E - WM&, VI = -W&, VI 

IE - wMl(x, v> = wc!w + K/cf)lf$0C~, I’) - 2wd,(x, Y) 

[E - ~W)l.h&, Y> = WWdf) + Uf>lh~(~~, J’) 

+ &Q - Ymlw”cf) - WAl)I 

+ %d-d U”‘(f) - fi2U’4’(f)“M.% 4) 

where K%(f) = -d2/dx2 + U”(f(x)) and KS(f) ac s t only on the first variable in the 
integrand of the lirst equation in (28). 

We note that the system has no soliton solution with E = E(f), since this would 
require in (28) that f0 = 0 =f,r =fil . However, there is the solution with f0 = 
foI =fiI = 0, E = E(4), fi,, = $‘, fil = fi2 = 0; this corresponds to the previous 
I-soliton, no-meson solution. 

Let us now consider the solutions with E f E(f). 
We note that the system (28) must be treated with care when terms of given orders 

in A are to be compared. For as we can see from the last of Eqs. (28) the 1.h.s. is 
O(A) whilst the r.h.s. is O(l), coming from the term containingf, . Substitution of this 
last equation into the first of those in (28), for E - E(f) = %I, h # 0, gives 

[X2 - NO) j W’(f) - U”(#o>l dj h = - 2M 1 dx KWhoW 

+ @S(O) j-f&) U”‘(f) dx 

- @“S(O) j-j&(xx) U(“)(f) dx (29) 

IKdf) - ~21fio(x) = -w2ow ~xf) (30) 

P&(f) + 2KLY) - ~21”M~, u) = g 6(x - Ywxf) - uYdo)l 

+ i 6(x - Y)hldX) vxf) 

- ; 6(x - Y)ho(-x, -4 c%f > (31) 
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where S(0) is to be interpreted by quantisation in a finite box. 
We see that to lowest order in k these equations become 

[A2 - gi(O)C]f, = 0 

Wf> - h21fill = 0 

WLLf) t 2Jw) - ~zlho(~, Y) = -Go - Y)hV(f) - q+o)l 

C = j- [U”(f) - U”(c$,)] dx. 

163 

(32) 

(33) 

(34) 

We takefb = 0 in (32) to remove the infinite constant 6(O), so that the solutions of 
(33) and (34) are 

(a> ~=L,fio=bn,.fio=O 

or 

(b) A = [Wn2 + ~mv2,f2~ = $,(x) h( y>,fio = fo1 = 0. 

The former class of solutions are the (one-meson + 1 soliton) states described in the 
previous section. The second type are clearly to be interpreted as (two-meson + 1 soli- 
ton) states, with threshold (2~) as expected. 

6. HIGHER MESON APPROXIMATIONS 

It is evident from the previous section that the technique developed there will prove 
difficult to extend to the higher meson + 1 soliton states. Even more crucially there 
seems no appearance of quantum corrections to the soliton mass [I]. In order to 
remedy these defects we will use the SchrSdinger field representation to set up the 
energy eigenvalue and eigenstate problem. We use the notation of the earlier section 
to solve the problem: 

H(n-, 4) ! E) = E 1 E;\. (35) 

We take I E) = U-l(&) I +), w h ere 4 / #j = # j #), 4 being a classical field. 
Equation (35) becomes 
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Since in this representation r = i/i S/S+, we have to solve 

(36) 

where 

We note that the summation over m in (37) is only over m > 0, since w,, = 0. We 

will have to take account of the lowest mode when G-l is considered, but we will 
discuss that in due course. We take 

to give 

I 4) = ev[-W# I xi 
E - E(&) = hfi 

(39) 

[ - T 6 + VtG$ - 6 + i fi tr G + v(4)] j x> = 6fi x;,. (40) 

Let us first solve (40) without the perturbation V(4). If we expand 

then (40) becomes 

G4 = 1 unanA 
n 

Ix> =x(al,a2, ...), 

1 
?Y a2 --- 
2 aan 

kw,a, & + X,fi] ,y = 0 
?z 

(404 

(41) 

where C A, = (A - $ tr G). In terms of the dimensionless variables x, , E, defined 
byx, = (w,JA)1f2a,, A, = E,W, , (41) becomes the usual harmonic oscillator equation 

[ 
22 -- 

axn2 
2.u, & + I en] x = 0 

n 

with solutions x = JJi &(xi), E, = mi , where the H,(x) is the nth Hermite poly- 
nomial and the m, are integers. Thus the energy of the associated state is 

X?i = ; tr G + c mp,$ (42) 
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the state itself being 

x = n ffmithdw’2) (43) 
z 

where a; = J +4i dx. We have the immediate interpretation of (42) and (43) as the 
energy of a state composed of one soliton and mi mesons in the ith mode, each with 
energy (p2 -t kj ) 2 l/2 and momentum ki . We note that (42) contains the zero-point 
energy ($7 Clc wb) as the first quantum correction to the energy of the single soliton 
state, for which mi = 0 for all i. This agrees with other approaches [l]. We also note 
that the no-soliton contribution and meson mass renormalisation counter terms must 
be included, to give the well-known results [I]. 

We may extend the above discussion to all orders in the perturbing potential 
F’(4) of (38). The first-order perturbation expression for the energy will be 

with similar expressions for the perturbation to the states (43). These expressions 
have the usual perturbation-theoretic interpretation, and can be given to arbitrary 
order. 

We may also evaluate equal-time form factors, as 

(E I fi dW I E’) = (4 I fi [&xi> + ~&>I I 4’) 
i=l i=l 

which can then be computed by means of (39) and (43). In the simplest case we have 

Let us take I 4) to be the one soliton state and 1 4’) to be the one meson plus one 
soliton state, so that 

+(x1 . ..) = e-tw 

&Cxl . . .) = X,e-:w~ 

Then 
<d I $7 = 0, 

and 

(c$ 1 c&x) 1 +‘) = j- n dx, f&(x,) e-czi2(+++J1~2 x,,&,‘x) 

= wJJm)1’2 ?A&4 

We thus obtain the result of Eq. (26) but with the extra correct normalisation factor 
(fi/w,)lj2; this agrees with the recent discussion of Steinmann [4] and earlier analysis 
[I]. We can furthermore obtain the I-soliton plus mesons state expectation value of a 
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product of unequal time fields by the same technique as used in Section 4, that of 
insertion of a complete set of intermediate states. 

We can relate more closely to the discussion of the previous two sections by 
rewriting the functions x(x1 ...) in terms of the fields I$ and d. Thus we introduce the 
annihilation and creation operators a+(x), a(x) respectively by 

a+(x) = G-l/“($ + iG4)/(2h)‘/3 

a(x) = G-l12($ - iG~$)/(2vl)~/~ 

so that the unperturbed Hamiltonian takes the usual harmonic oscillator form 

?i 1 dx dy u+(x) G(q) a(y). 

(44 

We define the component creation and annihilation operators ai+, ai by 

44 = c aidi( ai = 
i>O s 

a(x) I#J~(x) dx, 

a+(X) = 1 ai+df(X)y Uif = a’(X) d’(X) dxy 
i>o s 

so that the free Hamiltonian is 

C fiOJiai+t7i . 
i>O 

We note that we define G-lj2 in (44) by Ca,O #f(x) w;~/~#J y), since the zero 
frequency mode is not required in the freefield Hamiltonian. The states / E) con- 
structed earlier can be given in terms of the no-soliton vacuum state j O} by 

j E) = U(+,) fi (~!)-~/~(a~+>“~ 1 0) 
i=l 

= U(+J fi (t~i!)-l/” [I [G-1/2($ + iGc$)/(2Q1/‘] di+ dxIn’ / 0). 
i=l 

We thus have expressed the (1-soliton plus mesons) states in terms of the field operators 
at time t = 0 and so at any arbitrary time, if so desired, completing the results of the 
earlier sections. That j 0) is the no-soliton vacuum state is validated by the fact that 
the unperturbed field 4 will have its ith component J 4(x, t) 4$(x) dx developing in 
time with the factor ei”‘@, so that ai also annihilates the no-soliton vacuum state, for 
all i. 

We have deliberately excluded the zero-frequency mode in the various summations 
we have used, especially in the expressions for C# and 7 in (40a). This is correct because 
the zero frequency mode would have lead to the n = 0 equation from (41): 

( 
2h L++)x=o 

ho2 
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which has no discrete spectrum in h, . We note that (40a) would appear to violate 
the CCR’s, since from (40a) 

[4x), d(v)l- = --ifi c Mx) !uY) = -wwx - y) - &)(x) +o(y)]. (45) 
nzo 

However, we may use the standard argument [1 J to show that the last term in (45) is 
cancelled. Thus we compute the one-soliton matrix element of (45). The one-meson 
plus one soliton intermediate states give the contribution (45) and the single soliton 
intermediate state contribution cancels the last term in (45). Thus the expressions 
(40a) only describe the one-soliton plus one meson sectors, and do not completely 
describe the one soliton no-meson state; this requires the additional coherent state 
field operator U($, , t) and thus the corresponding wavefunction &(x). 

We finally show that the soliton is absolutely stable against decay into any finite 
number of mesons. In the Schrodinger representation we have that the 1 soliton and 
no-soliton states are respectively 

where 

I $,> = exp [ - & $Go$] 

Go = [ - & + uy+,,)] 6(x - y) 

with plane-wave eigenstates ${ . Then the overlap {4e 1 4,) has as integrand 

-+ c’ ( yi + a<)( yj + a?) Gij - 3 2 yt2 

where 

A change of variables to z = G1f2y leads to an integrand including the factor --xi ai 

in the exponent. But this has the value 

--4P j- 1 $@)I2 wk die 

which has already been shown to be -co corresponding to the existence of a topo- 
logical conservation law &&co) # 0. Thus the stability result follows. 



168 J. G. TAYLOR 

7. TIME DEPENDENCE 

We have so far restricted our discussion to purely time-independent solutions of the 
classical field equations. Let us now consider how time-dependence may be accom- 
modated in the Hamiltonian formalism. We will do that for the case of a moving 
soliton, with wavefunction f(x, t) = &(r(x - vt)), where y = (r - zP)-~/~, so that 
f satisfies the time-dependent wave equation 

f-f,, + U(j) = 0 

and has energy Jdx[# + $y2 + U(f)] = y E(&), as expected. Then the first 
approximation to the moving soliton state will be obtained by application of the 
coherent state operator U(f, t, U) = exp(@)M(f, t, U) similar to (5), but with 
M(S, t, U) now defined by 

Ml-6 t, 4 = j- dx &(y(x - 4) %,4(x, 0. 

Furthermore, 

uu t, 4C(x, t> u-u t, 4 = &x9 t> + f(y(x - ut)) 
U(f, t, 4&x, t> u-u t, u = &, t) + f(y(x - ut)) 

so then 

U(f, t, u)H(r, 4) U-l(f, t, U) = YE(&) + (terms containing 4, $). 

Thus the state 1 $C , t, u) is the lowest approximation to a single soliton with velocity 
u and energy YE(&). It may be translated to be at the pointy at time 0 by means of the 
translation operator exp((i/A) Py), to give the state 1 $C , t, y, u), 

I 74 , t, Y, u> = exp(W) PY> I 4~ , 6 4 

Finally Fourier transformation on y will produce the state 1 bC , t, p, u): 

id c , t, p, u> = s dy eipyJfi I dc , t, Y, u>. 

We may use this construction to consider the question of asymptotic states and 
fields for the soliton. To do that we will take the soliton state of given momentum, 
I A , P>, defined by 

I A , t, P, v> = I A , P> e-isot’K (46) 

with v = py/E($,), this state has momentum p and energy p,, = rE(&) so that we 
have the soliton mass shell condition 

PO 2 - p2 = E2(&). 
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We may obtain the state (46) by applying to the vacuum the operator 

s 
dy e iD,yifieipy’fiU-l(~c , t, py/E(+,)) = B(p, t) (47) 

and form the inverse transform 

B(x, t) = 1 e-iYzB(p, t) dp. 

From Eqs. (46) and (47) we see that 

[ 
82 

__ - $ + E’(+e)] B(x, t) j 0) = 0. 6t2 

Thus we see that B(x, t) is an appropriate operator to use to define asymptotic 
fields [3]: 

Bi&, t) = B(x, t) + d,,t(E(&), x - x’, t - t’)j(x’, t’) dx’ dt’ 

Bout(x, t) = B(x, t) f j- &v(E($,), x - x’, t’ - t’)j(x’, t’) dx’ dt’ 

where 

.h t> = [Cl + E2(+e)lB(x, t). 

Then the asymptotic fields Bi,(x, t), B&x, t) are obtained by the usual asymptotic 
limits from B(x, t) and can be used to construct S-matrix elements involving one 
external soliton. In particular the usual reduction formulas will be valid, giving 
S-matrix elements in terms of 

We cannot expect reduction formulas to apply to give multisoliton states in this 
manner, since there may not be such states in the spectrum of the Hamiltonian at the 
classical level. 

8. DISCUSSION 

We have tried to present evidence for the thesis that a soliton should be regarded 
as constructed from a suitable coherent state of the original meson field in the no- 
soliton sector. The evidence for this is strong in the case of static solutions to the 
classical field equations but is not so supportive for time dependent solutions involving 
multisohton states. The collective excitation method [I] seems more appropriate in 
this case. However there appears no reason in principle why the physical features of 
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the single soliton state considered here should not be valid for the more general case. 
We will discuss the physical implications of our results from that point of view. 

What is claimed to have been shown is that a soliton is an infinitely constituent 
‘bound state’. The original constituents are bound by means of the coherence provided 
by the solution of the original classical equations of motion. Thus the soliton states 
are not bound states in the usual sense of being constructed out of a finite number of 
fundamental constituents bound together by a suitable potential. Yet they are 
constructed solely from the mesons of the no-soliton sector. 

It is this feature which is most intriguing. Its detailed expression is given in terms of 
the classical field solutions describing the various form factors of the soliton states. In 
order to test such aspects it will be necessary to have a realistic model of the elementary 
particles whose classical solutions are to be obtained. Thus traditional bound state 
conditions, such as 2 = 0 [5], appear difficult to use immediately for detecting which 
particles might be solitons. 

One general result of a bound-state nature that does follow from our result is that 
the field theory from which solitons arose will not have any amelioration of its ultra- 
violet or infrared divergences. This is clear in the no-soliton sector, while solitons may 
only be satisfactorily treated if the higher quantum corrections to their various 
physical quantities are all finite. This is similar to the situation for traditional bound 
states. The extra asymptotic states to which the solitons and their meson clouds 
correspond can be treated as independent ‘elementary’ particles with associated 
fields and interactions. Such a description could be built out of the original Hamilton- 
ian by means of suitable coherent state operators. But the ‘elementary’ nature of the 
solitons would be as much of an illusion as that of traditional bound states, even 
though they may be treated on the same level as their elementary constituents for 
certain features of their dynamics, such as for deriving reduction formulas and 
dispersion relations [3]. 

The most important aspect of the soliton is its complete confinement of its constitu- 
ents. This attractive feature, as well as the large soliton mass, leads to the conjecture 
of constructing baryons from more weakly interacting particles. The most natural of 
these is the lepton family. A recent attempt has been made to construct such a model 
[6], though not using the soliton concept. There are various crucial difficulties about 
such a program, such as achieving a low enough magnetic moment from leptonic 
constituents, and also of localising such light constituents. It is clearly necessary to 
investigate these features, as well as the symmetry aspects, further. We hope to turn 
to the identification of quarks as leptons elsewhere. 
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